Math 10A
Worksheet, Discussion \#22; Tuesday, 7/17/2018
Instructor name: Roy Zhao

1 Partial Fractions

1.1 Concepts

1. Partial fractions allow us to compute an antiderivative of an expression of the form $P(x) / Q(x)$, where P, Q are polynomials, more easily (these are just fractions where the numerator and denominator are both polynomials). First long divide so that the degree or highest term of the polynomial P is less than Q. Then factor $Q(x)$ into linear factors if you can, or else quadratic factors. Then for each factor, write the simplification of the form: | Factor | $a x+b$ | $(a x+b)^{n}$ | $a x^{2}+b x+c$ | $\left(a x^{2}+b x+c\right)^{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| | Expression | $\frac{A}{a x+b}$ | $\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots$ | $\frac{A x+B}{a x^{2}+b x+c}$ |
| | $\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots$ | | | |

Afterwards, find what these constants are. One good way to do this is to multiply everything by $Q(x)$ to clear denominators and then plug in different values of x.

1.2 Problems

2. True FALSE To find the partial fraction decomposition of $\frac{4 x^{3}}{(x-1)(x+2)^{2}}$, we set it equal to $\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}$ and solve for A, B, C.

Solution: The degrees are the same and so we first need to long divide before doing this.
3. Find $\int \frac{x^{2}}{x^{2}+3 x-18} d x$.

Solution: First we have to long divide because the degrees are the same. We do this by writing $x^{2}=\left(x^{2}+3 x-18\right)+\left(x^{2}-\left(x^{2}+3 x-18\right)\right)=\left(x^{2}+3 x-18\right)+(-3 x+18)$ and so

$$
\int \frac{x^{2}}{x^{2}+3 x-18} d x=\int \frac{x^{2}+3 x-18}{x^{2}+3 x-18}+\frac{-3 x+18}{x^{2}+3 x-18} d x=\int 1+\frac{-3 x+18}{(x+6)(x-3)} d x
$$

Now we write $\frac{-3 x+18}{(x+6)(x-3)}=\frac{A}{x+6}+\frac{B}{x-3}$. We solve for the constants by multiplying through by $(x+6)(x-3)$ to get $-3 x+18=A(x-3)+B(x+6)$. Finally, we solve
for the constants by plugging in values for x. We can let $x=3$ to get $9 B=9$ and $x=-6$ to get $-9 A=36$ so $B=1$ and $A=-4$. Thus, we have

$$
=\int 1+\frac{1}{x-3}-\frac{4}{x+6} d x=x+\ln |x-3|-4 \ln |x+6|+C .
$$

4. Find $\int \frac{x^{3}+3 x^{2}+3 x+3}{(x+1)^{2}\left(x^{2}+1\right)} d x$.

Solution: We split it as $\frac{x^{3}+3 x^{2}+3 x+3}{(x+1)^{2}\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C x+D}{x^{2}+1}$. Multiplying through by $(x+1)^{2}\left(x^{2}+1\right)$ gives us

$$
x^{3}+3 x^{2}+3 x+3=A(x+1)\left(x^{2}+1\right)+B\left(x^{2}+1\right)+(C x+D)(x+1)^{2} .
$$

Letting $x=-1,0,1,2$ give us

$$
2=2 B, 3=A+B+D, 10=4 A+2 B+4 C+4 D, 29=15 A+5 B+18 C+9 D .
$$

Thus $B=1$ and $A+D=2$ so $4 A+2 B+4 C+4 D=10+4 C=10$ so $C=0$. Finally, we have that $15 A+5+9 D=29$ so $A=B=D=1$ and hence

$$
\begin{gathered}
\int \frac{x^{3}+3 x^{2}+3 x+3}{(x+1)^{2}\left(x^{2}+1\right)} d x \\
=\int \frac{1}{x+1}+\frac{1}{(x+1)^{2}}+\frac{1}{x^{2}+1} d x \\
=\ln |x+1|-\frac{1}{x+1}+\arctan (x)+C .
\end{gathered}
$$

5. Integrate $\int \frac{5 x}{x^{2}-9 x-36} d x$.

Solution: We have that $\frac{5 x}{x^{2}-9 x-36}=\frac{5 x}{(x-12)(x+3)}=\frac{A}{x-12}+\frac{B}{x+3}$. Multiplying gives $5 x=A(x+3)+B(x-12)$ and plugging in $x=-3$ and $x=12$ gives $-15=-15 B$ and $60=15 A$ respectively or $A=4, B=1$ and hence

$$
\int \frac{5 x}{x^{2}-9 x-36} d x=\int \frac{4}{x-12}+\frac{1}{x+3} d x=4 \ln |x-12|+\ln |x+3|+C .
$$

6. Integrate $\int \frac{4 x^{2}}{(x-1)(x-2)^{2}} d x$.

Solution: We set $\frac{4 x^{2}}{(x-1)(x-2)^{2}}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}$. Multiplying through gives us $4 x^{2}=A(x-2)^{2}+B(x-1)(x-2)+C(x-1)$. Now set $x=1$ to get $4=A$ and $x=2$ to get $C=16$. Now plugging in 0 gives us $0=4 A+2 B-C=16+2 B-16=2 B$ and so $B=0$. Thus, we have

$$
\int \frac{4 x^{2}}{(x-1)(x-2)^{2}} d x=\int \frac{4}{x-1}+\frac{16}{(x-2)^{2}} d x=4 \ln |x-1|-\frac{16}{x-2}+C
$$

7. Integrate $\int \frac{3 x^{2}-x}{(x-1)\left(x^{2}+1\right)}$.

Solution: We split it up into $\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}$. Solving, we get $A=1$ and $B=2, C=1$. So

$$
\int \frac{3 x^{2}-x}{(x-1)\left(x^{2}+1\right)}=\int \frac{1}{x-1}+\frac{2 x}{x^{2}+1}+\frac{1}{x^{2}+1} d x=\ln |x-1|+\ln \left|x^{2}+1\right|+\arctan (x)+C .
$$

8. Set up the partial fraction decomposition of $\frac{8 x^{3}+3 x^{2}+1}{(x-1)^{2}\left(x^{2}+4\right)^{2}}$ (you don't have to solve for the coefficients).

Solution:

$$
\frac{8 x^{3}+3 x^{2}+1}{(x-1)^{2}\left(x^{2}+4\right)^{2}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C x+D}{x^{2}+4}+\frac{E x+F}{\left(x^{2}+4\right)^{2}} .
$$

9. Integrate $\int \frac{\sec ^{2}(x)}{\tan (x)^{2}-\tan (x)} d x$.

Solution: First we u sub by letting $u=\tan (x)$ and then $d u=\sec ^{2}(x) d x$ so we have that this integral is $\int \frac{d u}{u^{2}-u}$. Then we write $\frac{1}{u^{2}-u}=\frac{1}{u(u-1)}=\frac{A}{u}+\frac{B}{u-1}$. Multiplying gives $A(u-1)+B u=1$ and letting $u=1$ gives $B=1$ and let $u=0$ to get $-A=1$ so $A=-1$. Thus

$$
\int \frac{d u}{u^{2}-u}=\int \frac{1}{u-1}-\frac{1}{u} d u=\ln |u-1|-\ln |u|+C=\ln |\tan (x)-1|-\ln |\tan (x)|+C .
$$

