1 Partial Fractions

1.1 Concepts

1. Partial fractions allow us to compute an antiderivative of an expression of the form P(x)/Q(x), where P, Q are polynomials, more easily (these are just fractions where the numerator and denominator are both polynomials). First long divide so that the degree or highest term of the polynomial P is less than Q. Then factor Q(x) into linear factors if you can, or else quadratic factors. Then for each factor, write the simplification of the

form:	Factor	ax + b	$(ax+b)^n$	$ax^2 + bx + c$	$(ax^2 + bx + c)^n$	
	Expression	$\frac{A}{ax+b}$	$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \cdots$	$\frac{Ax+B}{ax^2+bx+c}$	$\frac{A_1x+B_1}{ax^2+bx+c} + \frac{A_2x+B_2}{(ax^2+bx+c)^2} + \cdots$	

Afterwards, find what these constants are. One good way to do this is to multiply everything by Q(x) to clear denominators and then plug in different values of x.

1.2 Problems

2. True **FALSE** To find the partial fraction decomposition of $\frac{4x^3}{(x-1)(x+2)^2}$, we set it equal to $\frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$ and solve for A, B, C.

Solution: The degrees are the same and so we first need to long divide before doing this.

3. Find $\int \frac{x^2}{x^2 + 3x - 18} dx$.

Solution: First we have to long divide because the degrees are the same. We do this by writing $x^2 = (x^2 + 3x - 18) + (x^2 - (x^2 + 3x - 18)) = (x^2 + 3x - 18) + (-3x + 18)$ and so

$$\int \frac{x^2}{x^2 + 3x - 18} dx = \int \frac{x^2 + 3x - 18}{x^2 + 3x - 18} + \frac{-3x + 18}{x^2 + 3x - 18} dx = \int 1 + \frac{-3x + 18}{(x + 6)(x - 3)} dx.$$

Now we write $\frac{-3x+18}{(x+6)(x-3)} = \frac{A}{x+6} + \frac{B}{x-3}$. We solve for the constants by multiplying through by (x+6)(x-3) to get -3x+18 = A(x-3) + B(x+6). Finally, we solve

for the constants by plugging in values for x. We can let x = 3 to get 9B = 9 and x = -6 to get -9A = 36 so B = 1 and A = -4. Thus, we have

$$= \int 1 + \frac{1}{x-3} - \frac{4}{x+6} dx = x + \ln|x-3| - 4\ln|x+6| + C.$$

4. Find $\int \frac{x^3 + 3x^2 + 3x + 3}{(x+1)^2(x^2+1)} dx$.

Solution: We split it as $\frac{x^3+3x^2+3x+3}{(x+1)^2(x^2+1)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+1}$. Multiplying through by $(x+1)^2(x^2+1)$ gives us

$$x^{3} + 3x^{2} + 3x + 3 = A(x+1)(x^{2}+1) + B(x^{2}+1) + (Cx+D)(x+1)^{2}.$$

Letting x = -1, 0, 1, 2 give us

2 = 2B, 3 = A + B + D, 10 = 4A + 2B + 4C + 4D, 29 = 15A + 5B + 18C + 9D.

Thus B = 1 and A + D = 2 so 4A + 2B + 4C + 4D = 10 + 4C = 10 so C = 0. Finally, we have that 15A + 5 + 9D = 29 so A = B = D = 1 and hence

$$\int \frac{x^3 + 3x^2 + 3x + 3}{(x+1)^2(x^2+1)} dx$$
$$= \int \frac{1}{x+1} + \frac{1}{(x+1)^2} + \frac{1}{x^2+1} dx$$
$$= \ln|x+1| - \frac{1}{x+1} + \arctan(x) + C.$$

5. Integrate $\int \frac{5x}{x^2 - 9x - 36} dx$.

Solution: We have that $\frac{5x}{x^2-9x-36} = \frac{5x}{(x-12)(x+3)} = \frac{A}{x-12} + \frac{B}{x+3}$. Multiplying gives 5x = A(x+3) + B(x-12) and plugging in x = -3 and x = 12 gives -15 = -15B and 60 = 15A respectively or A = 4, B = 1 and hence

$$\int \frac{5x}{x^2 - 9x - 36} dx = \int \frac{4}{x - 12} + \frac{1}{x + 3} dx = 4\ln|x - 12| + \ln|x + 3| + C.$$

6. Integrate $\int \frac{4x^2}{(x-1)(x-2)^2} dx.$

Solution: We set $\frac{4x^2}{(x-1)(x-2)^2} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$. Multiplying through gives us $4x^2 = A(x-2)^2 + B(x-1)(x-2) + C(x-1)$. Now set x = 1 to get 4 = A and x = 2 to get C = 16. Now plugging in 0 gives us 0 = 4A + 2B - C = 16 + 2B - 16 = 2B and so B = 0. Thus, we have

$$\int \frac{4x^2}{(x-1)(x-2)^2} dx = \int \frac{4}{x-1} + \frac{16}{(x-2)^2} dx = 4\ln|x-1| - \frac{16}{x-2} + C.$$

7. Integrate $\int \frac{3x^2 - x}{(x-1)(x^2+1)}$.

Solution: We split it up into $\frac{A}{x-1} + \frac{Bx+C}{x^2+1}$. Solving, we get A = 1 and B = 2, C = 1. So $\int \frac{3x^2 - x}{(x-1)(x^2+1)} = \int \frac{1}{x-1} + \frac{2x}{x^2+1} + \frac{1}{x^2+1} dx = \ln|x-1| + \ln|x^2+1| + \arctan(x) + C$

8. Set up the partial fraction decomposition of $\frac{8x^3 + 3x^2 + 1}{(x-1)^2(x^2+4)^2}$ (you don't have to solve for the coefficients).

Solution:

$$\frac{8x^3 + 3x^2 + 1}{(x-1)^2(x^2+4)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+4} + \frac{Ex+F}{(x^2+4)^2}.$$

9. Integrate $\int \frac{\sec^2(x)}{\tan(x)^2 - \tan(x)} dx.$

Solution: First we *u* sub by letting $u = \tan(x)$ and then $du = \sec^2(x)dx$ so we have that this integral is $\int \frac{du}{u^2-u}$. Then we write $\frac{1}{u^2-u} = \frac{1}{u(u-1)} = \frac{A}{u} + \frac{B}{u-1}$. Multiplying gives A(u-1) + Bu = 1 and letting u = 1 gives B = 1 and let u = 0 to get -A = 1 so A = -1. Thus

$$\int \frac{du}{u^2 - u} = \int \frac{1}{u - 1} - \frac{1}{u} du = \ln|u - 1| - \ln|u| + C = \ln|\tan(x) - 1| - \ln|\tan(x)| + C.$$